[image: image1.png]OPTIMAN

WIRELESS TECHNOLOGY

NDIS Driver Design Document 1:
Option Confidential

Document Title:
NDIS Driver Interface Description Document

Doc Ref Number:

Revision Number:
4:

Revision Date:
April 2007

Author(s):

Matthew Sykes
Approval(s):

	Rev
	Appr Date
	Team Leader
	Project Leader
	

	1
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Revision History:

	Rev. No
	Author
	Description

	1 Draft
	Matthew Sykes
	Original

	4
	Matthew Sykes
	Add version 4 usb driver info

	
	
	

	
	
	

Table of Contents

31
Scope

32
References

33
Glossary and Acronyms

34
Overview

44.1
Ndis driver connection behaviour

44.1.1
Connection via the Ndis driver

64.1.2
Automatic vs Programmatic connection

64.1.3
Connection initiated via the Application channel

64.1.4
Interrelation of the flags and how they affect which connection strings are run

64.1.5
Connection initiated by the hardware

74.1.6
Auto reconnection

74.2
Overriding the default connection data

74.3
Disconnection behaviour

74.4
TCP window size

84.5
NDIS Driver IOCTL Interface Description

84.5.1.1
Interface, opening

94.5.1.1.1
IOCTL_GT_NDIS_GPRS_CONNECT

94.5.1.1.2
IOCTL_GT_NDIS_GPRS_DISCONNECT

94.5.1.1.3
IOCTL_GT_NDIS_GPRS_QUERY_STATUS

94.5.1.1.4
IOCTL_GT_NDIS_GPRS_QUERY_STATS

94.5.1.1.5
IOCTL_GT_NDIS_GPRS_GPRS_QUERY_IP_INFO

94.5.1.1.6
IOCTL_GT_NDIS_GPRS_RAW_AT

94.5.1.1.7
IOCTL_GT_NDIS_GPRS_CANCEL_RX

104.5.1.1.8
IOCTL_GT_NDIS_GPRS_WRITE_ CONFIGDATA

104.5.1.1.9
IOCTL_GT_NDIS_GPRS_READ_ CONFIGDATA

104.5.1.1.10
IOCTL_GT_NDIS_GPRS_GETORSET_CONNECT_CONFIG

104.5.1.1.11
IOCTL_GT_NDIS_GPRS_TRACE

104.5.1.1.12
IOCTL_GT_NDIS_GPRS_STOP_TRACE

104.5.1.1.13
IOCTL_GT_NDIS_GPRS_SET_TRACE_MASK

114.5.1.1.14
IOCTL_GT_NDIS_GPRS_GET_NET_CFG_ID

Scope

This document describers the interface of the NDIS driver, and particularly the interface an application can use to access the NDIS driver.

1 References

1) GtNDISDeviceIO.h

2) To Do. Reference to source code for device event handling

3) To Do. AT command set supported by the card

2 Glossary and Acronyms

	Term
	Description

	CHAP
	Challenge Handshake Authentication Protocol

	DCP
	Deferred Procedure Call

	DDK
	Device Drivers Developers Kit

	DHCP
	Dynamic Host Configuration Protocol

	GGSN
	GPRS Gateway Support Node

	IPCP
	IP Control Protocol

	LCP
	Link Control Protocol

	NDIS
	Network Device Interface Specification

	OID
	Object Identifier

	OS
	Operating System

	PAP
	Password Authentication Protocol

	PPP
	Point-to-Point Protocol

	RAS
	Remote Access Service

	NIC
	Network Interface Card

	WAN
	Wide Area Network

	WWNDIS
	Wireless Wan NDIS

	WDM
	Windows Driver Model

	ZCS
	Zero Configuration Service

3 Overview

Windows Longhorn will include management of GPRS connections, GPRS Zero Configuration Service, in a similar way in which XP includes management of Wireless LAN devices through WLAN ZCS. Part of the requirement for this is that the GPRS driver be an NDIS driver that reports its type as 802.3 (Ethernet) and supports ARP and DHCP requests from the PC, ie, it looks exactly like a LAN device to the OS.

The assignment of IP address, and DNS addresses must therefore be set to 'Assigned by DHCP'. This is the default setup in Windows so should need no modification.

The driver also exposes an interface for applications to use. It can be accessed through the standard CreateFile, CloseHandle and DeviceIoControl functions.

The driver sits atop what has traditionally been called a 'modem' channel, but can be considered a 'data' channel, because, unlike the other ports on the card, the data channel can go into data mode.

In data mode the channel accepts PPP data packets from the driver. If it is not in data mode, it is in 'AT' mode, and can accept AT requests from the driver. The AT commands supported are defined in Reference 3.

3.1 Ndis driver connection behaviour

3.1.1 Connection via the Ndis driver

When the device is inserted, the driver is loaded by the PnP manager. The driver reads its configuration data from the registry at HKLM\System\CurrentControlSet\ontrol\Class\ {4D36E972-E325-11CE-BFC1-08002BE10318}\xxx (xxx is the installed number for that network card, system assigned).

This data can also be seen on the Advanced tab of the device properties in Device Manager.

This data is composed of information used by the driver to make a connection. So, for example, user name, password (if used by the network), APN, and so on.

Of special note are the AT connection and configuration strings, seven of each. These are special AT commands that the driver runs in order to configure the card, or, to wait for a certain state, or to enter a PIN for example.

The format of the AT connection strings for pre version 4 drivers are:

AT^OK~

AT+CREG?^0,1~0,5~

For the Version 4 drivers, the connection strings are quite different and are:

AT+CGREG?^0,1~0,5~1,1~1,5~

at_owancall=1,1^OK~

at+cgact?^,1~

at_owandata?^owandata~

What this means is that the text up to the '^' is treated as an AT command, and sent to the device. It is repeatedly sent until the response from the card contains any of the text between the '^' and the first '~', and between subsequent '~'s.

So, the AT+CREG? example above will be sent, repeatedly, until the response form the card is +CREG=0,1 or +CREG=0,5.

PIN commands are treated somewhat differently. Because of the chance of SIM lock, if the PIN is set in correctly 3 times, any AT command containing the text PIN is sent just once, and regardless of the response from the card, the next step is proceeded to.

The final AT command sent is the dial command ATDT*99#. If a CONNECT_xxx is returned by the hardware, the driver starts the LCP negotiation which results in an IP and DNS address being received from the network, and then given up to the operating system.

This process can be observed if the control panel applet is used to view trace information at a depth of 14.

While the connection strings for the pre version 4 drivers can be changed, or even deleted, those for the version 4 drivers must not be. If they are, the driver will fail to connect..

3.1.2 Automatic vs Programmatic connection

The Ndis driver can connect automatically to the network when the driver starts. This behaviour is controlled by the AutoConnect flag.

When this flag is set to on, or true, the Ndis driver automatically sends the AT connection strings in the order they are listed resulting in an open connection to the network.

If this flag is set to off or false, the Ndis driver does not connect automatically. Instead, an application can cause the connection via the CONNECT IOCTL detailed later. When the Ndis driver receives this IOCTL it runs all the AT connection strings as detailed above.

3.1.3 Connection initiated via the Application channel, only on pre version 4 drivers

Another flag of note is the WaitForDCDGoin1 flag. If it is set TRUE, the driver does not send any AT commands to the hardware, what it does is wait for the DCD line to high on the device. When this happens, the driver starts the LCP negotiation.

This is used if another application wants to send AT commands through the Application channel on the card. When the application has sent all the AT commands it needs to configure the device, it dials, and when DCD goes high, the NDIS driver takes over the rest of the connection process by doing the LCP negotiation.

After successful negotiation of the IP addresses, the driver tells the OS it is connected, and the OS sends DHCP requests to the driver. The driver replies with the IP addresses it has, and the system is up and running, and the NDIS driver can now ship IP packets onto the device and to the network.

3.1.4 Interrelation of the flags and how they affect which connection strings are run

If AutoConnect is off, then only the config strings are run when the driver starts.

If AutoConnect is on, all the strings are run automatically when the driver starts.

If WaitForDCDGoing1 is on, none of the strings are processed.

3.1.5 Connection initiated by the hardware

In the case of Viper connection can be initiated by the hardware. What happens in this case is that the Ndis driver receives a CONNECT_xxx AT response. It then starts the LCP communication and so on as detailed above. None of the AT strings are run.

3.1.6 Auto reconnection

Another flag that controls the connection behaviour is AutoReconnection. With the inbuilt Cobra, the laptop switch turns the radio off and on. So the Ndis driver sees a DCD drop, and disconnects. With AutoReconnect set true, it then polls the state of the card to see if the radio is on again. It does this by rerunning the connection strings. AT+CREG? will only return 0,1 or 0,5 etc if the radio is on, and the card has an active context. Of course, on a Nozomi for example this flag just reconnects immediately to the network so it should only be set true for the Cobra Module card.

3.2 Overriding the default connection data

The data used by the Ndis driver, the AT connection strings, user name and password and so on can be overridden by using the registry. Create a file in the form of defaultdata.reg with the required data and run it to add this data to the registry at installation time. The Ndis driver will read this data once, when first run, and copy it to its local area whereupon it will be used every time it connects.

Note that as stated on the version 4 drivers the connection strings must not be changed.

3.3 Disconnection behaviour

For Nozomi drivers after 2.1.1.56 and Cobra drivers after 3.1.1.60 the Ndis driver has an accompanying service, gtdetectsc, which causes the card to disconnect from the network on standby and hibernate.

If the card is not set to airplane mode, it causes a reconnect on wake up.

This service needs to be installed in the usual way using the service api or via the command line, 'gtdetectsc -register'. It is not started though on first installation, so this needs to be done by the installer program or via 'net start gtdetectsc'

3.4 TCP window size

The Ndis driver also sets the TCPWindowSize to 146000 when it loads. This optimises throughput. This value can of course be overridden via defaultdata.reg.

3.5 NDIS Driver IOCTL Interface Description

Figure 2 shows the upper interface to the NDIS driver.

3.5.1.1 Interface, opening

The upper interface is composed of IOCTLs, IRP_MJ_CREATE, IRP_MJ_CLOSE. and IRP_MJ_CLEANUP.

To access the driver, an application calls CreateFile() with the file name "\\\\.\\GTNDISn" where n is a character representation of a value from 0 to 10. This value indicates the number of cards on the system this driver supports. So, with one card inserted and the driver running, this value will be '0'.

One thing to note is that the NDIS NIC driver (this driver) cannot be unloaded if an application has opened the device with a call to CreateFile(). The application needs to close the handle first. Therefore it must register for device event notification, specifying GUID_NDIS_LAN_CLASS as the interface class GUID. On receiving a DBT_DEVICEQUERYREMOVE device event for the device object, the application must close the handle. See Reference 2 for sample code to do this.

3.5.1.1.1 IOCTL_GT_NDIS_GPRS_CONNECT

In buffer is optionally a GT_NDISGPRSConnectParam struct.
No out buffer.

This ctl code causes a reconnect, using the data if supplied, if not, with the data read from the registry. The data supplied is not written to the registry for permanent use by the driver.

A successful registration with the network puts the card in to data mode.

3.5.1.1.2 IOCTL_GT_NDIS_GPRS_DISCONNECT

No in or out buffer.

This ctl code just disconnects the current session and puts the card into a state where it

The card is put into AT mode.

3.5.1.1.3 IOCTL_GT_NDIS_GPRS_QUERY_STATUS

In buffer. a 4 byte value. If 1, the status is returned the next time it changes, If 0 the current status is rerturned.

Out buffer is a GT_NDISGPRSStatus struct.

3.5.1.1.4 IOCTL_GT_NDIS_GPRS_QUERY_STATS

No in buffer.

Out buffer is a GT_NDISGPRSStats struct.

3.5.1.1.5 IOCTL_GT_NDIS_GPRS_GPRS_QUERY_IP_INFO

No in buffer.

Out buffer is a GT_NDISGPRSIpAddr struct.

3.5.1.1.6 IOCTL_GT_NDIS_GPRS_RAW_AT

In buffer is a CHAR buffer containing the AT command, (CR and NULL terminated)

The start of the buffer can, optionally, be a 4 byte int value to be used as the timeout in seconds for the AT command. The driver has a default 3 second timeout.

Out buffer is the response, including carriage returns.

3.5.1.1.7 IOCTL_GT_NDIS_GPRS_CANCEL_RX

No in buffer.

No out buffer.

This ctl cancels and resubmits a read request.

3.5.1.1.8 IOCTL_GT_NDIS_GPRS_WRITE_ CONFIGDATA

In buffer is a ConfigData struct.

No out buffer.

This ctl sets new configuration data in the driver, and causes the driver to store the data in the registry so it will be used next time the driver loads.

3.5.1.1.9 IOCTL_GT_NDIS_GPRS_READ_ CONFIGDATA

No in buffer.

Out buffer is a ConfigData struct.

Gets the configuration data used to make a connection form the driver.

3.5.1.1.10 IOCTL_GT_NDIS_GPRS_GETORSET_CONNECT_CONFIG

In buffer is three four byte integers. The first controls the value of autoconnect, the second, the value of WaitForDCDgoing1, the third, AutoReConnect. These values become the values in use by the driver, and, are written to the registry.

Out buffer is three four byte integers.

This ctl sets and retrieves the values for Autoconect and Waitfor DCDgoing1. Thyese values affect the way the driver behaves. If Autroconect is TRUE, the driver connects the PC automatically to the network. Any AT commands set as configuration data are run, until the expected response is received.

If WaitForDCDGoing1 is set TRUE, the driver waits for the DCD line going high event before connecting the PC to the network. Any AT commands set as configuration data are not run.

If AutoReConnect is TRUE, the driver tries to reconnect immediately after a disconnect, either form app or DCD going 1.

3.5.1.1.11 IOCTL_GT_NDIS_GPRS_TRACE

No in buffer

Out buffer big enough to contain character trace data, 1024 bytes is good.

This ctl also enables tracing in the driver.

3.5.1.1.12 IOCTL_GT_NDIS_GPRS_STOP_TRACE

No In or out buffer

This ctl stops the driver from generating trace data.

3.5.1.1.13 IOCTL_GT_NDIS_GPRS_SET_TRACE_MASK

In buffer is 4 byte int whose value is a bit wise combination of 1,2,4,8,16,32

This sets the level of tracing in the driver. 16 is the default value, and will give the progress of the IP negotiation with the network.

14 is a useful value as it shows all communication and negotiation.

15 shows 14 plus, all the function calls, but is usually too detailed.

IOCTL_GT_NDIS_GPRS_GET_NET_CFG_ID

Out buffer 2 * 48 bytes (the returned data is in wide char format, Unicode)

In buffer is null.

This IOCTL returns the GUID the system associates with this network device. This can also be found in HKLM\System\CurentControlSet\Control\Class\<net GUID>\<numeric id>\NetCfgInstanceId

IOCTL_GT_NDIS_GPRS_CONNECT

IOCTL_GT_NDIS_GPRS_DISCONNECT

IOCTL_GT_NDIS_GPRS_QUERY_STATUS

IOCTL_GT_NDIS_GPRS_QUERY_STATS

IOCTL_GT_NDIS_GPRS_GPRS_QUERY_IP_INFO

IOCTL_GT_NDIS_GPRS_RAW_AT

IOCTL_GT_NDIS_GPRS_CANCEL_RX

IOCTL_GT_NDIS_GPRS_WRITE_CONFIGDATA

IOCTL_GT_NDIS_GPRS_READ_CONFIGDATA

IOCTL_GT_NDIS_GPRS_GETORSET_CONNECT_CONFIG

IOCTL_GT_NDIS_GPRS_TRACE

IOCTL_GT_NDIS_GPRS_STOP_TRACE

IOCTL_GT_NDIS_GPRS_SET_TRACE_MASK

IOManager

NDIS driver

August 28, 2006
Page 7 of 11
Doc No:

